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Abstract The elastic analysis of thick-walled spheres made of functionally graded materials (FGMs) is con-
sidered to be one of the most important areas in many engineering designs. This paper presents the stresses
and displacement fields in an FGM thick-walled sphere under constant interior and exterior pressure. The
investigation was carried out using analytical and numerical methods. Exact and finite element (FE) models
of the pressurized spherical vessel were created, assuming and implementing continuous changing of Young
modulus along the radial direction. It is considered that the elastic modulus of the FGMs varies with thick-
ness according to the nonlinear generalized formula. For a pressurized FGM sphere, the analytical solutions
for displacement and stress distribution were developed and demonstrated in the radial direction. Finally, the
analytical results are compared to the results from the FE analysis.

Keywords FGM · Spherical pressures vessel · Elasticity · Finite element method · Analytical solution

1 Introduction

Functionally graded materials (FGMs) are a special type of heterogeneous materials whose material properties
continuously change over the domain. These materials are made up of two or more separate material phases,
the volume fractions of which are constantly varying when spatial factors change. Heterogeneous hybrid
composites are FGMs that have a gradient compositional variability of elements from one surface to the
other, resulting in constantly evolving material characteristics. In recent few years, several studies regarding
mechanical structures composed of FG materials have been carried out [1–8]. Tutuncu and Ozturk [9] found
closed-form solutions for cylindrical and spherical vessels with varying elastic characteristics following a
simple power law over the domain, resulting in simpleCauchy–Euler equationswith readily available solutions.
You et al. [10] investigated the elastic properties of an internally pressured thick-walled sphere made of FGMs.
There are two types of pressure vessels: one has two homogenous layers along the vessel’s inner and outer
surfaces, and the other has a functionally graded layer in the center; the other has just functionally graded
material. The thermo-mechanical stresses in an FGM hollow thick sphere were investigated by Eslami et al.
[11]. In their article, except for Poisson’s ratio, the material characteristics were supposed to vary over the
radius according to a power-law function. The temperature profile, radial displacement, radial stress, and hoop
stress as a function of radial direction are obtained by solving the heat conduction equation and the Navier
equation analytically. Under asymmetric thermo-mechanical loads, Poultangari et al. [12] studied the various
thermo-mechanical stresses in a thick hollow FGM sphere. Chen and Lin [13] performed elastic studies for
thick cylindrical and spherical FG pressure pipes using an exponential change ofmaterial stiffness. Tutuncu and
Temel [14] developed a novel methodology to stress analysis of pressurized hollow thick FGMcylinders, disks,
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Fig. 1 Thick-Walled FGM sphere

and spheres using the complementary function method. Borisov [15] investigates deformations and stresses
inside multilayered thick-walled spheres. Sadeghian and Toussi [16] investigated the thermo-elasto-plastic
behavior of an FGM spherical vessel under thermo-mechanical loads. They evaluated power-law variation
for material properties, including both mechanical and thermal characteristics, in this research, whereas the
Poisson ratio was assumed to be constant throughout the thickness. Using an exponential and parabolic law
in material characteristics, Nejad et al. and Karimi et al. developed analytical solutions for FGM thick-walled
spherical shells exposed to interior and exterior pressure [17, 18]. Also, the characteristics of an FGM-coated
spherical pressure vessel that varymaterial properties linearly and exponentially are investigated byAtashipour
et al. [19].

So far in the literature, the only analytical solutions that are available for the elastic field in spheres are when
the Young modulus is defined by the power law and exponential law. There is little to no work available in the
literature that addresses the Young modulus in the general formula without power law and exponential law. A
more generic expression for the spatial variation of the Young modulus of material given in the literature [20]
was adopted in this research. In the presence of interior and exterior pressures, we investigated the stress fields
in a thick spherical pressure vessel in FGMs. Here, the Poisson ratio is assumed to be constant, and material
stiffness is given by a nonlinear generalized formula with four parameters (see Eq. 4). The equilibrium equation
is converted into a linear homogeneous differential equation, which is solved analytically.

The pressurized vessel was also modeled using finite element analysis (FEA), where a FE code (USDFLD)
was used to implement the continuous variation of material stiffness along with the thickness. Following that,
we contrasted the exact and FE results.

2 Mathematical model description

The model is considered a hollow FGM sphere whose internal and external radius a, respectively.Pi and Po
are uniform pressure loads, both internally and externally. The FGM materials are considered to be linearly
elastic, and the Young modulus follows a nonlinear function depending on the radial axis only, where the
Poisson ratio is considered to be invariant.

A schematic diagram of the FGM sphere is given in Fig. 1.
For convenience, axisymmetric boundary conditions (BC) are necessitated for this case requires assuming

a spherical coordinate (r, θ, φ).
Since the load is axisymmetric and uniform, the displacement and stress fields are identical in θ and φ

direction. The stress and strain fields in the theory of plane elasticity can be stated as follows:

σij � σij(r ) , εij � εij(r )

u � u(r ) ,u � u ei



Analytical and numerical solutions of pressurized thick-walled...

where u is the displacement vector.
The material parameter is the function of r as it is graded along the radial direction. Assume ur is radial

displacement field since the problem is axisymmetric.
Kinematic relations are given:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

εrr � dur
dr

εθθ � εφφ � ur
r

εrφ � εrθ � εθφ � 0 (No shear deformation)

(1)

Stress–strain relationship from kinematic Eq. (1) can be written:
{

σrr
σθθ

}

� G(E(r), ν)

[
( 1 − ν) 2ν

ν 1

]{ dur
drur
r

}

(2)

where G(E(r), ν) � E(r )
(1+ν)(1−2ν)

Due to the absence of gravitational forces from the equilibrium, equation ofmotion in a spherical coordinate
system can be written as follows:

dσrr
dr

+
2

r
(σrr − σθθ ) � 0 (3)

where σrr and σθθ are the radial and hoop stress, respectively.
It is necessary to be familiar with the functional relations of the mechanical properties in order to derive the

equilibrium equation for the FGM sphere expressed in terms of the radial displacement component. A special
formula of material stiffness throughout the thickness is addressed to determine the effect of inhomogeneity
[20]:

E(r ) � Ei

( r

a

)m
e γ {( r

a )
s−1} (4)

Substituting the stress–strain relationship in Eq. (2) into the equation ofmotion in Eq. (3), Navier’s equation
can be expressed as follows:

r2
d2ur
dr2

+ r

(

2 +
r

E(r )

dE(r )

dr

)
dur
dr

− 2

(

1 − ν∗ r

E(r )

dE(r )

dr

)

ur � 0 (5)

where ν∗ � ν
1−ν

.
Then, substituting Eq. (4) into Eq. (5), the differential equation is obtained as:

r2
d2ur
dr2

+ r
dur
dr

{
sγ
( r

a

)s
+ m + 2

}
+ 2
[
ν∗ m + sγ

( r

a

)s − 1
]
ur � 0 (6)

As solid is incompressible and ν < 1
2 [20], E(r ) can be written as E(r ) ∝ rm so that r

E(r )
dE(r )
dr � m.

Equation (5) then reduces to the Cauchy–Euler equation. The indicial equation from the above equation can
be written as:

ξ (ξ − 1) + (2 + m)ξ − 2
(
1 − m ν∗) � 0 (7)

where ξ is the real root of the indicial equation. The two distinct roots are:

ξ1 � −1

2

{
(m + 1) −

√
m2 + 2m(1 − 4ν∗) + 9

}

ξ2 � −1

2

{
(m + 1) +

√
m2 + 2m(1 − 4ν∗) + 9

}

Using a new variable x � γ
( r
a

)s and Eq. (7) and then applying the transformation u(r ) � r ξ y(x), the
result of Eq. (6) is:

x
d2y(x)

dx
+ (b + x)

dy(x)

dx
+ ay(x) � 0 (8)



P. Das et al.

where, b � s + 2ξ + m + 1

s

a � 2ν∗ + ξ

s
Equation (8) is a confluent hyper geometric differential equation (Kummer’s function). The solution is

written in the following form [21, 22]:

y(x) � A e−x M(b1 − a1, b1, x) + B e−x M(b2 − a2, b2, x) (9)

A and B are constant that to be determined using traction boundary conditions.
M(b1 − a1, b1, x) is a Kummer’s function.
Substituting back original variable to Eq. (9), it can be written as:

u(r ) � A r ξ1 e−γ ( r
a )

s
M
(
α1, b1, γ

( r

a

)s)
+ B r ξ2 e−γ ( r

a )
s
M
(
α2, b2, γ

( r

a

)s)
(10)

where, α1 � b1 − a1 � s + 2ξ1 + m + 1

s
− 2ν∗ + ξ1

s

α2 � b2 − a2 � s + 2ξ2 + m + 1

s
− 2ν∗ + ξ2

s
The Kummer’s function M

(
α1, b1, γ

( r
a

)s) can be expressed as power series:

M
(
α1, b1, γ

( r

a

)s) � 1 +
α1
{
γ
( r
a

)s}

b1
+

α1 (1 + α1)
{
γ
( r
a

)s}

b1 (1 + b1) 2!
+ ...... +

(α1)n
{
γ
( r
a

)s}n

(b1)nn!
+ ......

Here, (αi )k � αi (αi + 1).... (αi + n − 1) is a Pochhammer’s symbol.
The fundamental features of Kummer’s function can be found in the scientific literature [22] as well as in

computer programs.
The derivative form of Kummer’s function can be written as:

dM (α, b, x)

dx
� α

b
M (α + 1, b + 1, x)

Now, the derivative of Eq. 10 can be expressed as:

du(r )

dr
� A r ξ1−1 e−γ ( r

a )
s [
a1sM

(
1 + α1, b1, γ

( r

a

)s)−
{
γ s
( r

a

)s
+ a1s − ξ1

}
M
(
α1, b1, γ

( r

a

)s)]

+ B r ξ2−1 e−γ ( r
a )

s [
a2sM

(
1 + α2, b2, γ

( r

a

)s)−
{
γ s
( r

a

)s
+ a2s − ξ2

}
M
(
α2, b2, γ

( r

a

)s)]

(11)

The expression of radial stress and hoop stress can be calculated as:

σrr � G(E(r), ν)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A r ξ1−1 e−γ ( r
a )

s
M
(
α1, b1, γ

( r

a

)s) (
(1 − ν)

{
−sγ

( r

a

)s − α1s + ξ1

}
+ 2ν

)
+

A r ξ2−1 e−γ ( r
a )

s
M
(
α2, b2, γ

( r

a

)s) (
(1 − ν)

{
−sγ

( r

a

)s − α2s + ξ2

}
+ 2ν

)

A r ξ1−1 e−γ ( r
a )

s
α1sν M

(
1 + α1, b1, γ

( r

a

)s)
+ B r ξ2−1 e−γ ( r

a )
s
α2sν M

(
1 + α2, b2, γ

( r

a

)s)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(12)

σθθ/φφ � G(E(r), ν)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A r ξ1−1 e−γ ( r
a )

s
M
(
α1, b1, γ

( r

a

)s) (
ν
{
−sγ

( r

a

)s − α1s + ξ1

}
+ 1
)
+

A r ξ2−1 e−γ ( r
a )

s
M
(
α2, b2, γ

( r

a

)s) (
ν
{
−sγ

( r

a

)s − α2s + ξ2

}
+ 1
)

A r ξ1−1 e−γ ( r
a )

s
α1sν M

(
1 + α1, b1, γ

( r

a

)s)
+ B r ξ2−1 e−γ ( r

a )
s
α2sν M

(
1 + α2, b2, γ

( r

a

)s)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(13)

It is possible to obtain the value of A and B using the boundary conditions for the sphere under internal
and external pressure as follows.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σrr |r�a� E(r )
du(r )

dr

∣
∣
∣
∣
r�a

� −Pi

σrr |r�b� E(r )
du(r )

dr

∣
∣
∣
∣
r�b

� −Po

(14)
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Equation (14) leads to two linear systems of the equation where two unknowns, A and B, can be related
as:

−Pi � G(E(a), ν)

⎡

⎢
⎣

A r ξ1−1 e−γ M (α1, b1, γ ) ((1 − ν){−sγ − α1s + ξ1} + 2ν)+

A r ξ2−1 e−γ M (α2, b2, γ ) ((1 − ν){−sγ − α2s + ξ2} + 2ν)

A r ξ1−1 e−γ α1sν M (1 + α1, b1, γ ) + B r ξ2−1 e−γ α2sν M (1 + α2, b2, γ )

⎤

⎥
⎦ (15)

−P0 � G(E(b), ν)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A r ξ1−1 e
−γ
(
b
a

)s

M

(

α1, b1, γ

(
b

a

)s)(

(1 − ν)

{

−sγ

(
b

a

)s

− α1s + ξ1

}

+ 2ν

)

+

A r ξ2−1 e
−γ
(
b
a

)s

M

(

α2, b2, γ

(
b

a

)s)(

(1 − ν)

{

−sγ

(
b

a

)s

− α2s + ξ2

}

+ 2ν

)

A r ξ1−1 e
−γ
(
b
a

)s

α1sν M

(

1 + α1, b1, γ

(
b

a

)s)

+ B r ξ2−1 e
−γ
(
b
a

)s

α2sν M

(

1 + α2, b2, γ

(
b

a

)s)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(16)

Two algebraic Eqs. (15) and (16) can be used to derive the constants A and B from the boundary conditions
of (14).

The Von-Misses stress can be written as:

σmisses � 1√
2

√

(σr − σθ )
2 +
(
σθ − σφ

)2 +
(
σφ − σr

)2 (17)

3 Finite element analysis

In this problem, a standard Galerkin discretization approach of the finite element method is used to solve the
differential Eq. (6). In this discretization, the size of each element is equal, and the total domain is divided into
N elements; then, the equation is converted into simultaneous equations.

∑
Kiju

e
j � Le

i ; i � 1, 2 e � 1, 2, ........N (18)

where the value of Kij and Le
i is obtained from

Kij �
∫ re+1

re

d
e
i

dr

d
e
j

dr
dr +

re+1∫

re

1

r

{
sγ
( r

a

)s
+ m + 2

}

e

i

d
e
j

dr
dr

+

re+1∫

re

2

r2

[
ν∗ m + sγ

( r

a

)s − 1
]

e

i 

e
jdr +

[


e
i

d
e
j

dr

]re+1

re

Le
i � 0

where 
e
i is the linear interpolation/weighting function.

Equation (18) gives uej values at different cylinder’s nodal points, which are used to determine stresses as
follows:

{
σr

σθ

}

� G(E(r), ν)

[
( 1 − ν) 2ν

ν 1

]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2∑

j�1
uej

d
e
j

dr

2∑

j�1

uej

e
j

r

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

The commercial FEM code known as ABAQUS was used to create the above mathematical FE model of a
spherical vessel under internal–external pressure. A quarter of the sphere specimen geometry was addressed in
the FEM model due to axisymmetric conditions. An 8-node biquadratic axisymmetric quadrilateral, reduced
integration (CAX8R) element is used to represent the FGM sphere. 3050 elements in total, optimized from
grid independent tests, were chosen for the final FEM model. Figure 2 shows the grid independent test for the
FE model. A FORTRAN code USDFLDwas written and then coupled with ABAQUS for capturing variations
of nonlinear material properties along the radius.
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Fig. 2 Mesh independence test

Fig. 3 The variation of elastic modulus along the radial direction with various values of m

4 Results and discussions

Initially, a thick sphere with a varying radial modulus of elasticity is considered to illustrate the effectiveness
of the present analysis. The inner and outer radii are a � 0.1m and b � 0.2m respectively. For convenience,
it is assumed that Young modulus at the inner surface of the sphere Ein � 200GPa and Poisson ratio ν � 0.3.
Pin � 50, 250, 500 MPa are the applied internal pressures, and in some cases, the outer is traction free
(Pout � 0). The values of constants in Eq. (4) are changed to establish a condition for ease of analysis. The
constants can be changed in a variety of ways to replicate these conditions. The values of γ � 0.172, and
s � 4.1 according to [19]. The study was then carried out for variation of non-homogeneity parameters m �
− 5, − 4, and − 3, which correspond to the ratios Eout/Ein � 0.5, 1, and 2.

MAPLE program is written to carry out the analytical solution. In order to assess the efficiency and
robustness of the present approach, the obtained analytical solution is compared with finite element method
(FEM). The dimensionless Young modulus in the radial direction is presented in Fig. 3 for m � − 5, − 4, and
− 3, which correspond to the ratios Eout/Ein � 0.5, 1, and 2. According to this graph, the non-dimensional
Yong modulus increases as m rises at the same radial location in a < r < b.
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Fig. 4 The variation of normalized displacement along the radial direction for various values of m

Fig. 5 The variation of normalized displacement along the radial direction for a particular value of m � − 4, and changed values
of interior pressure

It is noted that from Figs. 3 to 11, the continuous lines represent analytical results, whereas the discrete
markers represent FEA results. The displacement fields obtained from FE and exact solutions along the radial
direction of the sphere for various values of m are shown in Fig. 4. Figure 4 clearly demonstrates that radial
displacements are greatest on the interior surface (r � a). From the inner surface to the outer surface, it
is also seen that the radial displacement values steadily decrease. We get an increase in radial displacement
with a decrease in m. The drop inm causes an increase in radial displacement because the sphere’s global
stiffness decreases. The displacement variation of heterogeneousmaterials is analogous to that of homogeneous
materials. However, the displacements of the FGM spheres are larger than those of a regular sphere for the
specified material inhomogeneity parameter.

Figure 5 depicts the fluctuation of the radial displacement resulting from FE and exact solutions along the
radial direction of a sphere using a constant value of m � − 4 and various values of interior pressure Pi �
50, 250, and 500 MPa. The values of radial displacement decrease progressively from the inner to the outer
surface but increase with increase in internal pressure.
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Fig. 6 The variation of normalized stress along with the thickness for various values of m

Fig. 7 The variation of normalized circumferential stress along with the thickness for various values m

Figure 6 shows the normalized radial stress, as calculated by Eq. 12, for different values of m � − 5, −
4, and − 3. It is clearly shown that heterogeneous materials have a similar trend of radial stress variations
compared to homogeneousmaterials. For all examined values ofm, the stress along the radial direction increases
monotonically with r. It was found that when m grows, the radial stress magnitude decreases for each fixed r
in a < r < b. The reason behind this is that the sphere’s overall rigidity increases. Equation 13‘s normalized
circumferential stress was presented along the radial direction, as illustrated in Fig. 7. For all possible values of
m, the hoop stress variation throughout the radius is similar to thick spheres composed of isotropic materials.
This is because there is pressure acting within, yet there is no pressure acting externally. The value of hoop
stress decreases as m grows in r <∼ 1.5 and converging in nature. However, when m grows, the tangential
stress rises for each given value of r in r >∼ 1.5 m and diverges in nature.

The Von-Misses stress distribution obtained from Eq. 17 is plotted in the radial direction for the various
values of m, as shown in Fig. 8. The equivalent stress variation is monotonous concerning r for all values of
m. This pattern is comparable to the homogeneous FGM sphere. Misses stress increases on the inner surface
with a reducing value of m, and decreases at the outer surface with increasing values of m. For all fixed values
of r in r< ~1.2 m, the corresponding stress is shown to grow as m dropped. However, the corresponding stress
grows asm rises for each fixed value of r in r > ~1.2 m. This is because an increase in the outer surface results
in an increase in global stiffness.
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Fig. 8 The variation of Von-Misses stress along radial direction for various values of m

Fig. 9 The variation of normalized radial stress along with the thickness for a particular value of m � −4 and changed pressure
ratios

Radial distribution for normalized radial stress for a fixed value of m � −4 and various pressure ratios
such as Pout/Pin � 0, 0.5, 1, 2 are plotted in Fig. 9. Radial stress increases in nature for the pressure ratio
0 ≤ Pout/Pin ≤ .5. Furthermore, its initial rate of increase is faster as material elasticity decreases. A
slightly decreasing–increasing pattern is observed in the case of Pout/Pin � 1. In the case of Pout/Pin � 2,
radial stress falls drastically in the region 1 ≤ r

a ≤∼ 1.4. After that, it remains invariant in the region of
1.4 ∼≤ r

a ≤∼ 1.5, and then, it becomes decreasing in the left of the portion. Indeed, decreasing elasticity
inducedmore compressive stress.Moreover, increasing the pressure ratio decreases the induced stress (tensile).

The radial distribution of normalized circumferential stress for a particular value of m and pressure ratios
Pout/Pin � 0, 0.5, 1, 2 is plotted in Fig. 10. In the case of Pout/Pin � 0; it can be shown that as elasticity
reduces, produced circumferential stress drops aswell, afterwhich it stays invariant. The induced stress becomes
almost constant in the case of Pout/Pin � 0.5. The stress trend line for the scenario 1 ≤ (Pout/Pin) � 0 ≤ 2
is the reverse of the instance Pout/Pin � 0. The circumferential stress rises and then falls in case 1 ≤
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Fig. 10 The variation of normalized circumferential stress for a particular value of m � − 4 and changed pressure ratios

(Pout/Pin) � 0 ≤ 2, making a dome shape. Furthermore, the higher the pressure ratio dome shape becomes
more concave. It is because elastic modulus falls in the middle region of the sphere; that is why maximum
stress is found at the central layers.

The distribution of normalized Von-Misses stress for a certain value of m � − 4 and different pressure
ratios are plotted in Fig. 11. The equivalent stress appears to be symmetric about r/a � 1.5 for Pout/Pin � 1.
It is observed that from r/a � 0 to r/a � 1.5, the stress value initially decreases, then after a certain value,
it increases, and the left of the portion is reflected. For instance Pout/Pin � 0.5, the diminishing character of
equivalent stress is discovered. When Pout/Pin � 2, however, Von-Misses stress falls for each value of r in
/a ≤∼ 1.5, whereas it rises for each particular value of r in r/a ≥∼ 1.5 m. In the case of Pout/Pin � 0, an
increasing–decreasing pattern of equivalent stress is noticed, similar to Pout/Pin � 2. In addition to the above
analytical and numerical results, stress and displacement fields for mechanical loading are also presented.
Figure 12 shows the radial displacements, radial stresses, circumferential stresses, and failure stresses values
that are obtained from FEA (ABAQUS) results. It is evident from the contour plot (Fig. 12) of FEA data that
the displacement of the inner surface (12a) of the sphere is higher than the outer surface. On the other hand, the
radial stress on the inner surface is less than the sphere’s outer surface (12c). However, Von-Misses and Hoop
follow the same nature (Fig. 12b and d). Finally, it can be mentioned that the contour plots and the graphical
data (Figs. 3 to 11) have a good agreement.

5 Conclusions

An analytical formulation was offered in this study to determine the displacements and stress fields in a thick-
walled sphere that was under interior as well as exterior pressure. A nonlinear equation with four parameters
along the sphere’s thickness was projected to describe the change in FGM properties. The acquired outcomes
were compared to those of an isotropic sphere. For different pressures and varying material inhomogeneity
parameters, the findings are represented as the evolution of various stress fields along the radial direction.
Based on the findings presented above, we draw the conclusion that the spatial variation in material stiffness
has a significant impact on the distribution of stresses as well as displacement fields in the FGM Sphere.
Therefore, the non-homogeneous parameter is a helpful tool from the standpoint of design; it may be adapted
to various applications in order to regulate the stress fields. For the purpose of validation, the FE model of the
sphere under pressure was created. Within this model, a FE code was utilized to accomplish the continuous
changing of the Young modulus along with the radial directions. Furthermore, the analytical and numerical
solutions were then contrasted with one another. The validity of the analytical model was demonstrated by
the fact that there was a high degree of similarity between the numerical findings and the exact solutions.
When an analytical approach fails to provide a solution or is too time-consuming, the FE solutions might be
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Fig. 11 The variation of normalized Von-Misses stress for a particular value of m � − 4 and changed pressure ratios

Fig. 12 Stress and displacement fields obtained using the ABAQUS code, with a radial displacement; b failure stress; c radial
stress distribution; and d hoop stress distribution
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useful to solve much more complicated problems, optimize parameters, and create a novel FGM according to
customized preferences.
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